

http://jsgeek.com/jsconf

One day Chicken-micro was making a request to the corn server
when—boom! The request timed out.




s -

oY P

Goodness gracious, the servers , |
must be down. | must go and tell
the System Operator.




Chicken-micro went along until she came to boxy-loxy.



Chicken-micro and boxy-loxy went along until they came
to robot-rob




Chicken-micro, boxy-loxy, and robot-rob made it to the
System Operator.




Chicken-micro Postmortem

« Qverloaded server should have returned 503

- Load-balancer should have taken slow server out
of rotation

- How would chicken-micro know that there are
other healthy servers and that the next request will
succeed?




Do microservices help?

- Hypothetical Steps

Decompose the corn service into many smaller
services

Each microservice is independently deployable

New microservices are each located behind
load balancers

- When microservices are architected the same as
the services they replace, they will face the same
challenges as the previous services.




What is a Microservice?

- Small, decomposed, isolated and independently
deployable services

- Stateless and less fragile when changes are
introduced




Benefits of Microservices

- Embrace failure, works in spite of external failures

- |terate quickly - disposable services, independently
deployable services




Microservice AntiPatterns

- Load balancer between microservices
- Startup order matters
- Load balancers everywhere

* + many others, Microservices AntiPatterns and
Pitfalls by Mark Richards




Load balancer between microservices

const getCorn = function (id, cb) {
const url = “http://corn.prod.site.com/${id} ;
wreck.get(url, { timeout: 5000 }, (err, res, corn) => {
if (err && err.message === 'Client request timeout') {
// retry the request
return setTimeout(() => getCorn(id, cb), 1000);
by
// «.. handle err or success
1);
i




Load balancer between microservices

const getCorn = function (id, cb) {
const url = "http://corn.prod.site.com/${id} ;
wreck.get(url, (err, res, corn) => {
// server 1s under load, retry
if (err && err.output.statusCode === 503) {
return setTimeout(() => getCorn(id, cb), 1000);
¥
// ... handle err or success
1)
s




Startup order matters

const mysql = require('mysql');

const connection = mysql.createConnection({
host: process.env.DB_HOST

¥);

connection.connect();
// no fallback for db not found




Load balancers everywhere

const config = {
prod: {
motion: 'motion.prod.srv.site.com’,
humidity: 'humidity.prod.srv.site.com’,
temperature: 'temperature.prod.srv.site.com’,
frontend: 'frontend.prod.srv.site.com’,
logs: 'logs.prod.srv.site.com’







Autopilot Pattern

» Apps that can be deployed and scaled with a
single click.

- Apps and workflows that work the same on our
laptops as in the cloud (public and private cloud).

- Apps and workflows that aren't married to any
specific infrastructure or scheduler.

* Further reading at autopilotpattern.io




Auopilot Applications

- github.com/autopilotpattern - solutions that follow
the Autopilot Pattern

- MongoDB, MySQL, InfluxDB, Consul, NATS,
Wordpress, JenkKins, ...

» Container support through ContainerPilot



http://github.com/autopilotpattern

Autopilot in Practice

* Applications composed of portable docker
containers

» Service discovery through consul or another
catalog

- Container local health and services respond to
service dependency changes




Node.]s Example

* https://qgithub.com/autopilotpattern/nodejs-
example

- Modules used:
* hapi
* Seneca
* Piloted
* Wreck



https://github.com/autopilotpattern/nodejs-example

smartthings Browser g

v

Docker Container

Docker Container Docker Container Docker Container

ContainerPilot ContainerPilot ContainerPilot ContainerPilot

Prometheus %

smartthings @ natsboard @ traefik &

Docker Container

Docker Container Docker Container

Docker Container

Docker Container Docker Container

Docker Container Docker Container

ContainerPilot

nodejs @

frontend

ContainerPilot

Consul G{:

ContainerPilot

Docker Container

Docker Container

ContainerPilot Docker Container

ContainerPilot

nodejs @

serializer

humidity

Docker Container

ContainerPilot

motion

Docker Container Docker Container

©Joyent

TRITON

ContainerPilot ContainerPilot

temperature @ InfluxDB






Isolation

function setupDb () {
const influxServer = Piloted.service('influxdb"');
if (!influxServer) {
internals.db = bufferedDb;
return;

}

internals.db = new Influx.InfluxDB({
host: influxServer.address,
port: influxServer.port
1)
I




Change

Piloted.on('refresh', () => {
setupDb();
r);




ContainerPilot

- Automates a container’s service discovery, life cycle
management, and telemetry reporting

- Capabilities

« Container-local health checks

- PID 1 init process
 Service discovery registration and watchers
- Telemetry reporting to Prometheus

* Free & Open Source! github.com/joyent/
containerpilot




ContainerPilot Lifecycle

application postStop

get backend T
addresses health check health check onChange
action

preStart get backend
addresses

v
ContainerPilot

register application
with Consul

|

Consul




ContainerPilot Watches

watches: [

{

name: 'influxdb',
interval: 3

]I
jobs: [
{
name: 'onchange-influxdb’',
exec: 'pkill -SIGHUP node’,
when: {
source: 'watch.influxdb',
each: 'changed'

}
}




ContainerPilot Services

name: 'serializer',

port: {{.PORT}},

exec: 'node /opt/app/',

health: {
exec: /usr/bin/curl -o /dev/null —--fail

-s http://localhost:{{.PORT}}/health",

interval: 2,
ttl: 5

g
}




Circuit Breakers

Prevent requests that will fail from taking place and
overburdening a service

Once a response timeout threshold has been
reached block future requests to the service until
the service is able to catch-up/recover

Is this possible to implement with a load balancer?




hapi Circuit Breakers

const server = new Hapi.Server({
load: {
sampleInterval: 50 // milliseconds
b
1)

server.connection({
port: process.env.PORT,

load: {
maxEventLoopDelay: 20 // milliseconds

}
});




Balancing in the Client

// Round-robin
const service = Piloted.service('nats');

// You decide
const services Piloted.serviceHosts('nats');

// Grab a random healthy service
services[Math.floor(Math.random() * services.length)];







Load Balancers at the Edge

* Don’t expose microservices directly outside of your
organization

- Setup a load balancer that can use Consul, in our
example this is traefik, could be HA Proxy, nginx,

or anything else

- APl gateways have a place when exposing the
business value we created with our microservices




Telemetry Support

telemetry: {

port: 9090,

tags: ['op'l],

metrics: [

{

namespace: 'example’,
subsystem: 'process',
name: 'event_delay’,
help: 'Node.js event loop delay’,
type: 'gauge'




hapi Metrics with Toppsy

O stacked

example_process_event_delay{instance="172.17.0.6:9090",job="containerpilot"}




Further Reading:

» All links can be found at: jsgeek.com/jsconf

- Autopilot Pattern - autopilotpattern.io

 hapl - hapijs.com

- ContainerPilot — joyent.com

- Seneca — senecajs.org



http://jsgeek.com/jsconf
http://senecajs.org

