Wiredcraft

Graduating your node.js API to
production environment

Learn about
Scalable code / Architecture / Servers

Introduction

Goal for this talk

Give you confidence to take your API’s
to production.

Introduction

Goal for this talk

Give you confidence to take your API’s
to production.

...0r

scare you from ever launching

Introduction

Type of architecture we expect

Sub-service

©

Middle

service

©8 Sub-service

wn

c

. 7
n

D

=

: <.
0

()

Adjust your thinking

Thinking

What does production system mean

System that has real users and real data. Typically at
least few thousand daily users for public services.

Thinking

What does ‘being production ready’ mean

Thinking

What does ‘being production ready’ mean

Developer: “Code runs and functionality passes tests

Thinking

What does ‘being production ready’ mean

Developer: “Code runs and functionality passes tests

Business Manager: “System works and adds value to users
and brings profit”

Thinking

What does ‘being production ready’ mean

Developer: “Code runs and functionality passes tests

Business Manager: “System works and adds value to users
and brings profit”

Library developer: “Project is widely adopted and well
documented”

Thinking

What does ‘being production ready’ mean

Developer: “Code runs and functionality passes tests

Business Manager: “System works and adds value to users
and brings profit”

Library developer: “Project is widely adopted and well
documented”

Devops guy: “Runtime environment is stable, debuggable
and maintainable”

Thinking

What does ‘being production ready’ mean

Developer: “Code runs and functionality passes tests

Business Manager: “System works and adds value to users
and brings profit”

Library developer: “Project is widely adopted and well
documented”

Devops guy: “Runtime environment is stable, debuggable
and maintainable”

Security Expert: “System is checked for common security
threats and critical data is encrypted.”

Thinking

Avoid missing responsibilities

Make sure that your team as a whole covers all the
responsibilities needed for going to production
including: Components, Code Quality,
Performance, Security, Release management, User
Experience

Thinking

Example of a common reason for failure

“Logging component is responsibility of Joe, who
left the project, it should be working, but we don’t
really know how it works.”

Learnings:

- Make sure all parts of the codebase are looked after
- Make sure the transfer of responsibility is done

properly

Code

Code

Requirements for
making your code production ready

- Stable
- Efficient
- Debuggable

Code

Logging

Devops guy’s definition of production ready: “Runtime
environment is stable, debuggable and maintainable”

Code

Logging

Devops guy’s definition of production ready: “Runtime
environment is stable, debuggable and maintainable”

General philosophy:

Logs should tell a story.

Code

You need a logging platform

You need a central service that can collect and
expose the logs with powerful search, filtering and
visualization capabilities.

ELK (Elasticsearch, Logstash, Kibana) is common
stack.

There are many cloud services such as Loggly,
Splunk, New Relic

Code

How to track logs across components?

Introduce concept of request-id’s:

- When request first enters the system (at the gateway for
example) it generates uuid and attaches it as a
x-request-1id http header

- Upstream services will read that value and for every log line
they attach the request-id

- If they make any requests to second level services they
attach the x-request-id header.

- Devops guys stay happy since they can now follow the flow
of requests through the distributed system.

Code

How to track logs across components

- Sub-service
Xx-request-id: 1223
x-request-id: 1223
ndroi -

Middle Sub-service
service

Sub-service

Code

Using debug is not enough!

Debug library is a powerful and easy to use library, it
however is not designed for production systems since
it doesn’t offer multiple log levels!

We recommend using an alternative logger (Winston
for example) for application logs. This should:

- Include logging incoming requests and their
information

- Any operations that modify data

- Requests and responses to/from external services

Code

Using debug is not enough!

You can still use debug (any you probably should!) on
the same codebase for development level logging.

Code

Expect external services to fail

How will your APl behave if upstream API is:

- Taking too long to respond?
- Rejecting connections?
- Giving application errors?

Code

Expect external services to fail

Will your API.

- Get unresponsive? (bad)

- Recover automatically when API recovers? (a must)

- Leave data in inconsistent state? (very bad)

- Start returning 5xx errors and stay responsive?
(sometimes the best option)

Code

How to survive upstream service failures

- Design the business logic accordingly

- Have proper error handlers for different cases

- Manage your timeout limits consciously.

- Limit maximum amount of connections to a service
- If needed, Circuit Breaker pattern to the rescue...

Code

Circuit Breaker pattern

Try to detect if service is down and stop calling it ifitis
down

- Have “counter” to keep track of failures for a service
- If limit is exceeded stop calling the service and just
return an error immediately

Helps to stop bombing upstream service that is trying to
recover and respond faster when they are

Code

Circuit Breaker example (brakes package)

const brake = new Brakes(serviceCall, {
statInterval: 2500,
threshold: 0.5,
circuitDuration: 156000,

timeout: 250
})s

brake.fallback(() => {

return Promise.resolve('Service not available');

1)

brake.exec().then(...)

Hystrix

If you are interested to learn more you should check
Hystrix by Netflix:

https://github.com/Netflix/Hystrix/wiki

The project is in Java, but the wiki if useful learning
resource.

Brakes (and many others) are based on concepts
from Hystrix.

https://github.com/Netflix/Hystrix/wiki
https://github.com/Netflix/Hystrix/wiki

Code

Common pattern in node.js is to do
something like:

function fetchUsername(id) => {

return UserDB.get(id)

.then((data) => data.username)

Code

Add error handling

function fetchUsername(id) => {
return UserDB.get(id).then((data) => {
return data.username
})
.catch((err) => {
logger.warning(‘Error catched in fetchUser’,
{user_id: id, erro: err})
throw new Error(fetchUser failed with error id

${id}, error: ${err.message})

1)

Code

Common problem: connection management

If you are making a lot of outgoing connections per
request consider using pooling. Network connections
are limited resource and it may become a bottleneck
for your system or the system on the receiving end.

For database connectors pooling is a common thing
to use, but not as common for http connectors.

Code

Request module has pool argument

request ({
url: s.url,

pool: {maxSockets: 10}

})

Can be used to set maximum amount of
connections for each external service.

System

System

How we run performance/stability test

- Choose a few common user journeys with some variability
- Simulate the user journeys on http level
- Mock external services if needed

- Run the journeys with test runner with enough
concurrency

System

We use Locust (it’s Python!)

class MyTaskSet(TaskSet):
min_wait = 5000
max_wait = 15000

@task(10) # Weight of 3
def searchRandomProduct(
pass

@task(20) # Weight of 6
def loadDetailPage():
pass

@task(1l) # Weight of 1
def logout():
pass

System

How we run performance/stability test

Run two tests:

Max throughput:

Find the limits of the system, analyze if the system
handles it gracefully.

Long term stress:

Run a test with less load but leave it running 10+
hours.

System

Security

There are two conflicting ideologies on using libraries:

- “Idon’t need to use library-x, it’'s too heavy and | just
need a few of its features. I'll just write it from scratch

”

- “I'll just leverage existing library for this, why would |
spend time writing something someone else already
wrote?”

System

Security

When it comes to anything related to security, avoid
writing any code yourself! Especially if it's about
encryption or authentication.

System

Security

There are a bunch of common security related threats one
that is fairly easy to fix is to use the correct HTTP headers

There are a lot of small details related to request and
response http headers that can affect the security of the
system. Helmet is a good package to give some of the
security with minimal effort:

app.use(helmet())

It will adjust the headers of your application for you.

System

You don’t have to solve everything with code!

People tend to solve problems with tools that they are
familiar with. For programmers this means solving problems
by writing code.

However, there may sometimes be an alternative approach.

System

You don’t have to solve everything with code!

Example 1. Caching

Implementing caching logic in your code easily increases
its complexity and also introduces un-determinism to the
system (makes testing more difficult).

There are powerful caching solutions (like Varnish) that

can be integrated without modifying any of the code. It

may be less flexible but for production systems keeping
complexity lower is a huge benefit.

System

You don’t have to solve everything with code!

Example 2: Connection limiting

We talked earlier about limiting the amount of connections
to a server. Doing this with code is not the only option.

Load Balancers can be introduced between two services
to limit the number of allowed connections and buffer the
incoming requests. This can help to protect the upstream
server from too many requests.

System

You don’t have to solve everything with code!

Talk to your infrastructure/devops guys and be
creative when solving problems.

If you can solve the problem (even partially) using just
infrastructure changes then it may be the best choice
for you, since you won’t have to write any code and

the complexity of your API does not grow.

System

Sum up

Thinking

- Consider different aspects of going to production
- Be aware of missed responsibilities

Code

- Do proper logging

- Handling service failures
- Log error context

- Manage connections

System

Sum up

System

- Do performance / stability testing
- Don’t implement security yourself
- Leverage infrastructure level solutions

Thank you!

