
Ryan Chen 陈亮, Engineering Manager
Chromecast and Home, Google

Typescript, Angular, 和移
动端的跨平台开发

1

What’s TypeScript?

What’s TypeScript?

● A statically typed superset of JavaScript that compiles into plain
JavaScript.

● Future features + Typing + Tooling (Compiler / IDE)
● Released in 2012 and open source.
● Anders Hejlsberg: Typescript makes JavaScript scale.

○ Better readability and integratable software.
○ Any browser, host, and OS.

TypeScript Type System

● TypeScript compiler (tsc)
○ tsconfig.json - configures compilation options for JS
○ Static type checking and code refactoring.

● Types are optional and can be inferred by tsc.
● Works with all the popular frameworks:

TypeScript Features

● Enums 枚举
● Interfaces 介面

● Decorators 装饰器

● Protected / Private
● Union Types
● Modules (ES6 模块)

● Async / Await (generator)
● Exponential operator (**)
● keyof
● Object Spread
● Mixin 混入

● Iterator

TypeScript Interfaces

● Interfaces describe the shape of

your JS objects.

● Interfaces disappear during

compilation to JS.

● Coercions do not add runtime

checks.

interface MediaInformation {

 title: string,

 description: string,

 type: CustomMediaType,

 url: Url

}

TypeScript Decorators

● Decorators add annotation and
meta-programming syntax for

○ Classes @Component @Injectable
○ Properties @Input @Ouput

@ContentChildren

● Observe, modify, or replace
existing objects to allow
additional functionalities.

@Component({

 selector: 'tab-group',

 templateUrl: 'tab-group.component.html',

 changeDetection: OnPush

})

class TabGroup {

 @ContentChildren(Tab) tabs: QueryList<Tab>;

 @ViewChildren(Header) headers: QueryList<Header>;

}

TypeScript Typing

● --strictNullChecks prevents common mistakes.
● Type assertions <expr>!.<method>
● Type casting <expr> as <type>
● any describes a type of variables that we do not know at compile time.

○ Allow integration with 3rd party JS Library
○ Opt-in/out type checking flexibility

● never catches functions that throw error.

TypeScript External Types

● Type declarations files (.d.ts): Interfaces, enums etc.
● Existing browser and DOM types: lib.es6.d.ts
● DefinitelyTyped - 3000+ common .d.ts files
● Editors (i.e. VS Code) can understand npm modules that have type

definitions.

https://github.com/Microsoft/TypeScript/blob/master/lib/lib.es6.d.ts
https://github.com/DefinitelyTyped/DefinitelyTyped
https://github.com/DefinitelyTyped/DefinitelyTyped

TypeScript Adoptions

● Google - All Angular products by default.
○ Google Express, Firebase, Analytics, Cloud, Finance, etc.

● Microsoft - Visual Studio Code
● Netflix - Many web browser products (i.e. video player) and internal

services.
● Palantir, Slack
● Finance: Accenture, Forbes, Capital One, etc.
● Entertainment: NBA, Royal Caribbean, ...

(Angular) => return Platform

13

Why Angular?

● Speed and Performance
○ Complete Rewrite from AngularJS with 5x improvement.
○ Angular 4 : Rewrote View Engine => 40% smaller size application.
○ Laze-load.

● Cross Platform for Mobile: DOM Decoupling.
● Platform not just a framework => High quality end to end experiences.
● Scalability, trustworthy, community.

○ Built to scale.
○ One change in Angular => thousands of tests run as a result. (Google and outside)
○ No breaking change in incremental versions.

Why Angular?

CORE
核心

LIBRARIES
库

TOOLS
工具

Angular Core

● Expressive declarative components and directives.
○ Cross-Platform: Decoupled rendering from the DOM (NativeScript, Universal)
○ Content Projection
○ Pipes

● Dependency Injection
● Zones

○ Execution context for hooking onto async tasks.
○ Change Detection strategies.

Angular Lifecycle Hooks

17

● A component or directive has a lifecycle managed by
Angular.

● Angular creates it, renders it, creates and renders its
children, checks it when its data-bound properties
change, and destroys it before removing it from the
DOM.

● Angular offers lifecycle hooks that provide visibility into
these key life moments and the ability to act when they
occur.

Performance Myth

Performance result from js-benchmark-framework:

● 10 types of operations, fastest:
○ Angular fastest in 6: Replacing all rows; partial update; select row; swap rows; remove

rows; append row to large table.
○ Vue fastest in 4: create rows, create many rows, clear many rows, startup time.
○ React: 0.

Framework vue-2.3.3 angular-4.1.2 react-15.5.4

Geometric Mean 1.07 1.12 1.17

Is that the fair truth?

Angular Change Detection

● NgZone - Creates an execution
context where Angular monkey
patches the asynchronous calls and
emit onTurnDone event.

● ApplicationRef - Triggerred by
onTurnDone and checks the whole
component tree for change
detections.

● ChangeDetectorRef - checks only the
current component and its children.

ObservableWrapper.subscribe(

 this.zone.onTurnDone, () => {

 this.zone.run(() => { this.tick(); });

 });

tick() {

 this.changeDetectorRefs.forEach((detector)

=> {

 detector.detectChanges();

 });

}

Angular Change Detection

● Every component has a change detector.
● Change detector propagates bindings from top to leaves.

○ Directed tree: More performant, predictable, and debuggable than
cycles.

● Hundred of thousands of checks per few milliseconds.
○ Done per changeable event (DOM event, XHR, setTimeout/Interval)

because JS objects are mutable.

To the rescue...

Immutability and Observable

Observable

● Observable (by Ben Lesh, speaker from last JS Conf China.)
○ A stream of data to represent any number of things over any amount

of time.
○ Lazy, cancellable, and don’t generate values until someone subscribes

to it.
● Angular Uses RxJs Observable for subscription based processing of

asynchronous operations.

http://reactivex.io/rxjs/

Observable

let observable = new Observable(observer => {

 const operation = fn((value, err) => {

 if (!err) {

 observer.next(val);

 if (<condition meets for last value>) { observer.complete(); }

 } else {

 observer.error(err);

 }

 });

 return () => { cancelOp(operation); }

});

Angular Change Detection OnPush

● Immutable input
○ Component can only change if its input properties change.
○ Data of component’s parent and all the way to the root has to change.

● Observable input
○ Component can only change if one of its input emits an event.
○ Component’s data can change without its input or parent or up

change.

@Component({

 selector: 'current-time',

 template: 'Current Time: {{ timeObservable | async }}</div>'

})

export class CurrentTimeComponent {

 timeObservable = new Observable<string>((observer: Subscriber<string>) => {

 setInterval(() => observer.next(new Date().toString()), 1000);

 });

}

Angular Async Pipe and Observable

● Subscribes to an observable and returns latest value emitted.
● New value => marks the component to be checked for changes.
● Component Destroyed? Automatically unsubscribe to prevent memory leak.

Angular Change Detection

● Default change
detection complexity:
O(n)

● OnPush Observable
complexity:
O(log(n))

Angular Libraries

● Forms - Validations and Two-way data binding
● Router
● Animations
● Material Components
● i18n

Angular Router Config

import {RouterModule, Routes} from

'@angular/router';

const routes: Routes = [

 {path: '', component: WatchListComponent},

 {path: 'videos/:id', component:

VideoDetailsComponent},

 {path: 'index', redirectTo: '/', pathMatch:

'full'},

]

Index

Video

<router-outlet></router-outlet>

Angular Dynamic Router

Dynamic Router - Automatic code-splitting to load code required to render the
view they request.

● Default: Register the module only when needed.
● Webpack implementation creates bundle splitting and serve file url.

import { Routes } from '@angular/router';

export const ROUTES: Routes = [

 { path: '', component: HomeComponent },

 { path: 'detail', loadChildren: './path/to/module#ModuleName'}

];

Angular Animation

● Built on top of standard Web Animation API and run natively on browsers
that supports it.

● Part of Angular 2 core originally but now separated into
@angular/platformBrowser/animation.

○ Smaller code size.
○ Better adaptations to other platforms like native.

https://w3c.github.io/web-animations/

Angular Material

● Mordern UI components work across Mobile, Web, and Desktop.
○ Form: Date Picker, AutoComplete, Slider...
○ Navigation: Menu, Toolbar...
○ Layout: Tabs, Grids, Lists…
○ Controls: Progress spinner and bar…
○ DataGrid

● Themeable and Internationalizable.
● Tuned for performance.

https://material.angular.io/components

Angular Tooling

● Ahead of Time (AOT) Compiler
● Angular Universal
● Command Line Interface (Angular CLI)
● Augury (Chrome Dev Tool)
● Language Services: IDE Integration
● Protractor and Karma for testing.

https://github.com/angular/angular-cli
https://augury.angular.io
https://augury.angular.io

App Size

No one likes a large application size

Angular AOT

● Ahead-of-time compilation: Runs once at build time.
● Eliminates the need to package the Angular compiler (half the size of

Angular library) to your production application.
● Detect template errors early.
● Used by Mobile Frameworks: Ionic & NativeScript.
● Tree Shaking: Remove any dead code not used in final bundle by WebPack.

Angular Universal

● Pre-compiles the app into an HTML/JS/CSS offline in a build step.
● Host on CDN for caching.

○ First time users instantly see result!
○ Optimized for search engine.

● Preboot creates hidden div and records user interactions.
● Angular starts boostraping itself into the hidden div along with external

resources
● Boostrap Done -> Switch hidden view up and replay user interactions.

Angular CLI

Guides your application throughout:

● ng new <app>
○ Scaffold best practice applications.

● ng generate
○ Generate components, services, pipes, routes, etc.

● ng serve --open
○ hot reload support

● ng build --pod
○ AOT

Future: Smaller, Faster, Easier to Use

Why build mobile apps with Angular

● Code and skill reuse.
● TypeScript
● Search engine - crawl your web app.
● Web updates usually faster.
● Progressive web gives you audience reach while native gives you richer

experience.

Ionic Framework: Open source mobile SDK for developing
progressive web apps and native apps.

Ionic Framework

● Progressive Web App - A mobile web app that feels like a native app.
○ Better adoption : no need to download.
○ Better sharing: a url.

● Service Worker
○ JavaScript on a separate thread.
○ Background context for an app to handle various operations.

■ Caches data for offline viewing
■ Push notifications when your web app goes away.

Ionic Framework

Angular type decorators like @Page and @App ensures UX guideline for iOS
and Android respectively.

Ionic Framework

● Native device features: bluetooth, fingerprint auth, etc.
● Cordova for native deployment.
● Ready-made components. (Similar to Angular Material)
● Native Scrolling
● Hardware Accelerated Animation
● Smooth Transition
● Touch Events
● Ahead of Time Compilations (AOT) powered by Angular.

A runtime for building and running native iOS and Android
apps with a single Angular/TypeScript code base.

Telerik Native Script

● Virtual Machine creates run-time to compile TS/JS to
native code.

● Direct Access to native API. No wrappers (unlike
ReactNative).

Native Script

● Native UI elements. No DOM. Template XML
○ <ActionBar> - Mobile specified UI
○ <TextField>, <Label>, <StackLayout> - common UI

● Same Angular template, component, directive, input,
and event syntax

<StackLayout class="page">

 <Label text="{{listname}}" class="font-weight-bold text-center"></Label>

 <Image [src]="imageAsset" stretch ="none"></Image>

 <ListView [items]="items" class="list-group">

 <ng-template let-item="item">

 <Label [nsRouterLink]="['/item', item.id]" [text]="item.title"

 class="list-group-item"></Label>

 </ng-template>

 </ListView>

 <Button text="More..." (tap)="loadMore()"></Button>

</StackLayout>

NativeScript Template

Native Script 煊染

● Angular render compiler based on XML rather than DOM
● Angular renderer instantiate and modify NativeScript views.

Native Script

● Type Conversion Service - Converts JavaScript type to native type
(Java or Objective C)

● Metadata - Lookup actual native platform call for the one you try to
call.

● Call Dispatcher - Makes actual call.
● Custom Proxy Object - a wrapper on the native object for back and

forth.

NativeScript Delegation

Native Script

● tns CLI
○ Scaffold various components
○ Live reload, build, and test.

● Plugins
○ Access native features, such as Camera
○ Npm modules, Cocoa pods, and Android Gradle, etc.

● 3rd Party JS Libraries: Integratable if no DOM dependency.
○ Typings are extractable from node_modules.

● Chrome Developer Tools

What about native code?

TNS Native Code

import * as Platform from "platform";

import * as Application from "application";

const pkg = Application.android.context.getPackageManager().getPackageInfo(

 Application.android.context.getPackageName(),

 PackageManager.GET_META_DATA);

java.lang.Integer.toString(pkg.versionCode);

NSBundle.mainBundle.objectForInfoDictionaryKey("CFBundleShortVersionString");

{{demo}}

58

Thanks and References

● The Google Angular Team, Stephen Fluin.
● Typescript: https://www.typescriptlang.org/
● Angular: https://angular.io

○ Victor Savkin https://vsavkin.com/
○ 中文网: https://angular.cn
○ Material: https://material.angular.io

● Ionic Framework: https://ionicframework.com
● NativeScript: https://www.nativescript.org/

https://www.typescriptlang.org/
https://angular.io
https://vsavkin.com/
https://angular.cn
https://material.angular.io
https://ionicframework.com
https://www.nativescript.org/

End of Talk 谢谢

